

Radiothérapie des cancers oesophagiens

Dr N Peguret,

MD, Ing.

Service de Radio-oncologie

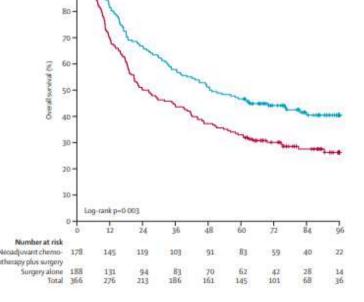
Clinique Hirslanden des Grangettes



Plan

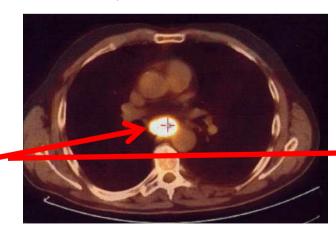
- 1/ Rappel du procès d'une radiothérapie (RT)
- 2/ Indications dans le cancer œsophage
- 3/ Succès de la RT
- 4/ Limites de la technique

1/ Rappel du procès


Radiothérapie: une spécialité ou l'on fabrique son médicament

2/ Principales indications

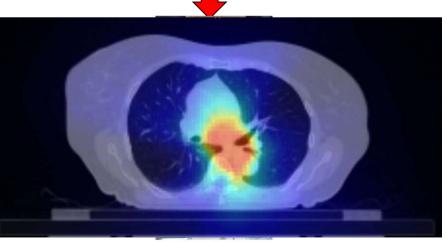
RT curative


- Pré-opératoire: approche multimodale toujours préf
 - 41,4Gy en 23 séances de 1,8Gy, 1fois par jour, 5 fois /sema
 - Chaque séance (2mn d'irradiation, 15min de durée totale)
 - RCTnéo (50Gy avec carbo/paclitaxel) puis Chir > Chir seu
 - Schéma CROSS (Van Hagen, NEJM 2012, J Shapiro, Lance)
 - R0 (92% vs 69%) et pCR (29% dans le bras multimodal)

- Définitive: 25-30 séances
 - RCT 50Gy avec cis/5FU > RT seule a 64Gy (RTOG85-01, Herskovic, NEJM 1992)
- RT palliative: 5-13 séances sur 1-2,5 semaines

- Intégrer les progrès de l'imagerie pour optimiser les traitements
 - Apport du PET CT au FDG
 - Bonne Spécificité et VPP (les positif sont svt vrais) 84-90% (Van Westreenen, JCO 2004)
 - Pauvre Sensibilité et VPN (cf limitation de resolution) 51-74%
 - Meilleure précision (PETCT 83% vs CT seul 68%)
 - Change le stade (parfois bcp 38% cf. serie propsective, Leong RadiotherOncol 2006)
 - Assiste le CT pour définir Tumeur et Ganglions atteints
 - Réduit le «geographic miss» et inter/intra observer variabilité

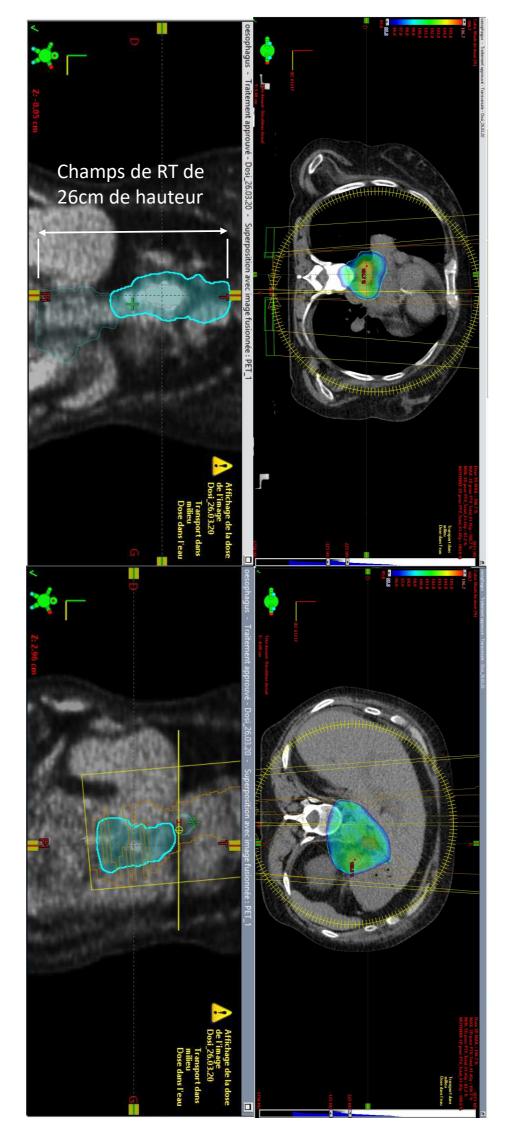
Par fusion d'images, définition optimale des cibles a traiter



- Intégrer les progrès de l'imagerie pour optimiser les traitements
- Optimiser la délivrance des rayons
 - Améliorer la conformité à la cible

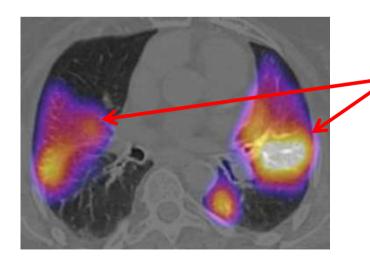
Années 1990-2000 (2D/3D)

2000-2023 (techniques de modulation d'intensité)



Diapositive 6

PN1 Guidée par l'image (IGRT)


Efficacité anti-tumorale

Moins toxique sur les organes à risque Peguret Nicolas; 13.10.2023

- Intégrer les progrès de l'imagerie pour optimiser les traitements
- Optimiser la délivrance des rayons
 - Améliorer la conformité à la cible
 - Réduire les potentielles toxicités
 - Usage de la scintigraphie ventilation/perfusion

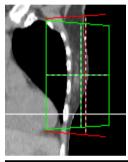
Identifier zones de parenchyme pulmonaire bien ventilées et bien perfusées

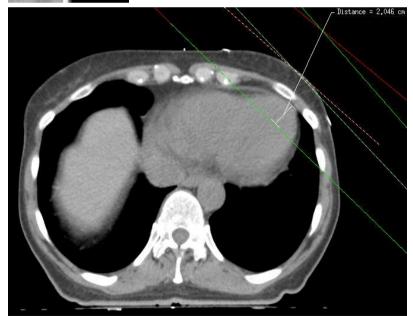
Programmer la machine de RT afin d'éviter le passage des rayons par ces zones pour mieux les épargner

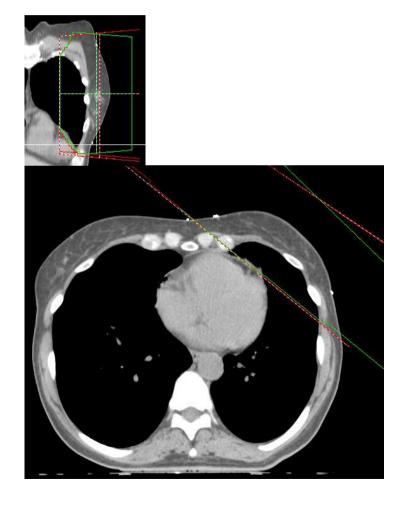
- Intégrer les progrès de l'imagerie pour optimiser les traitements
- Optimiser la délivrance des rayons
 - Améliorer la conformité à la cible
 - Réduire les potentielles toxicités
 - Usage de la scintigraphie ventilation/perfusion
 - Traitement en inspiration bloquée

Accélérateur linéaire (Varian)

Accessoire d'aide à l'inspiration bloquée (Dyn'R)





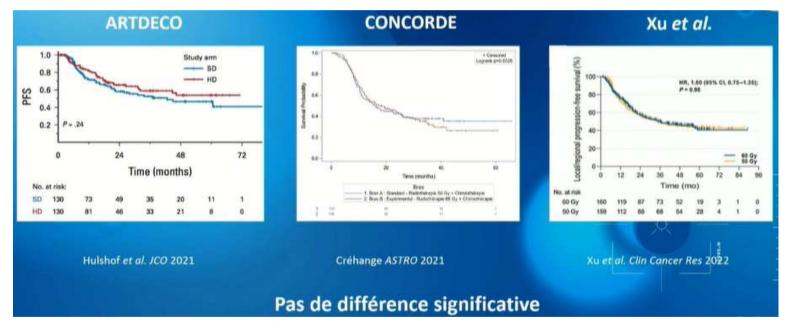

Inspiration bloquée?

Intérêts dosimétriques et cliniques de la radiothérapie asservie à la respiration des cancers du poumon et du sein : Résultats du Stic 2003,

P. Giraud, Cancer/Radiothérapie 2012

- Lenteur d'actions de la RT
- Escaladation de doses: Avant, 1 essai avec plus de tox sur le bras escaladé

RCT avec 50,4Gy vs 64,8Gy Essai RTOG 0123, Minsky, JCO 2002


Auj., 3 essais randomisés de Ph III d'escaladation dose

	ARTDECO	CONCORDE	Xu et al.
N	260	217	319
Stades	66%T3/26%N0	74% stade III	58%T3/30%N0
Histologie CE/ADK	62%/38%	88%/12%	100%CE
TEP scanner initial	oui	oui	Non obligatoire (15%)
Doses	50,4Gy/28 (1,8Gy) vs 61,6Gy/28 (2,2Gy) SIB	50Gy/25 (2Gy) vs 66Gy/33 (2Gy)	50Gy/25 (2Gy) vs 60Gy/30 (2Gy)
Boost	Т	T+N	T+N
ENI	oui	oui	oui
Technique	IMRT	3D (20%)/IMRT (80%)	IMRT
Durée (semaines)	5,5	5 vs 6,5	5 vs 6
Chimio conco	6x carboplatine/paclitaxel	6x FOLFOX-4	cddp/docetaxel
Assurance qualité	non	oui	oui

4/ Limites

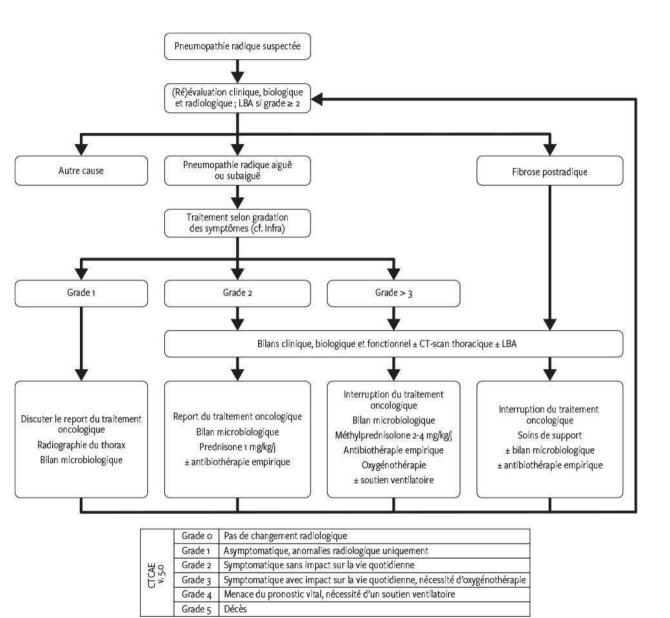
- Lenteur d'actions de la RT
- Escaladation de doses:
 - LC et OS identiques sur bras standard vs Bras High dose

• Mais + de tox de grade 5 (non SS) pour 2 1ers essais et + de Pneumopathie dans le 3eme (SS

Pas de gain de l'escalade de dose

4/ Limites

- Lenteur d'actions de la RT
- Escaladation de doses
- Toxicité pulmonaire (RILI Radio Induced Lung Injury)
 - <u>Prévalence</u>: 6.2% de PR dans le bras escalade de dose de Xu (vs 1,2% bras standard)
 - <u>Définition:</u> 2-3 grands syndromes
 - 1/ Pneumonie aigue radique: 1-3 mois post RT (Dyspnée, toux, fièvre)
 - 2/ Pneumopathie radique fibrosante
 - 6 mois a 2 ans post RT
 - Dyspnée d'effort
 - SF de DDB et parfois surinfections
 - Possible évolution vers l'IRC
 - 3/ la BOOP / Pneumonie Organisée
 - 3-12 mois post RT
 - Favorisée par hormonothérapie concomitante
 - Taux de rechute post Cortico de 17 à 65%
 - Guérison spontanée 5- 14 mois sans rechute ni complication
 (arrêt transitoire de l'hormonothérapie jusqu'à nettoyage complet des lésions)
 - Serait secondaire a une réaction d'hypersensibilité médiée par lymphocytes



- Lenteur d'actions de la RT
- Escalation de doses
- Toxicité pulmonaire
 - Prévalence: 6.2% de PR dans le bras escalade de dose de Xu (vs 1,2% bras standard)
 - <u>Définition</u>: 2-3 grands syndromes
 - Diag differentiel:
 - Tumorales: Récidive tumorale (CBPC)
 - Lymphangite néoplasique
 - Infectieuses: Pyogènes
 - Virale (période épidémiques de grippe)
 - Pneumocystose sous corticothérapie
 - latrogènes ou autres:
 - TKI (EGFR...)
 - Chimio (taxol, pemetrexed...)
 - Inhalation (cannabis...)

4/ Limites

- Lenteur d'actions de la RT
- Escalation de doses
- Toxicité pulmonaire
 - Prevalence: 6.2% de PR dans le bras escalade de dose de Xu (vs 1,2% bras standard)
 - <u>Définition</u>: 2-3 grands syndromes
 - Diag differentiel:
 - Traitement:
 - 1/Préventif: Torental (Pentophyxilline), Inhibiteurs des enzymes de conversion
 - 2/ *Curatif:*
 - Corticothérapie à la phase aigue (test diagnostic) 1mg/kg, pas plus de 3 smn
 - Attention à un grand classique de Pneumocystose
 - 3/ A la phase de séquelle fibrosante: Prevenar / Pneumo 23, si TVO Beta2+

	Caractéristiques	Remarques	
Patient	Âge ≥ 65 ans	Atteinte auto-immune	
	Pneumopathie préexistante	Atteinte interstitielle, BPCO	
Tumeur	Localisations basales ou sous-pleurales	724	
	Volume	Augmentation du risque avec la taille	
	Génétique	Mutation entravant la réparation de l'ADN, favorisant la survie ou l'inflammation	
Traitement systémique	Chimiothérapies	Toute substance	
	Immunothérapies	Anti-PD1, anti-PDL1 et anti-CTLA-4	
	Thérapies ciblées	Inhibiteurs de tyrosine kinase et autres	
Radiothérapie	Technique	Diminution du risque si SBRT	
	Dose totale délivrée	> 20 Gy de dose moyenne adminis- trée au poumon	
Administration	Séquentielle	Chimiothérapie puis radiothérapie	

Rev Med Suisse. 2022 Nov

Conclusions

- RT œsophage: un procés avec plusieurs étapes qui reste un travail d'équipe
- Des indications claires
 - En Curatif en traitement neoadjuvant voire parfois en exclusif
 - En Palliatif
- RT moderne
 - Qui intègre les données de l'imagerie de 2023 (PET, scinti ventilation/perfusion)
 - Qui dispose de moyens informatiques évolués pour mieux conformer la dose au bénéfice d'une moindre toxicité
 - Qui fait parfois participer le patient par son inspiration
- Mais qui garde des limites
 - La lenteur de l'effet antitumoral (tj différé)
 - D'une manière générale, ne pas excéder en dose
 - Une potentielle toxicité pulmonaire (pb de diagnostic et de sevrage du traitement)

Merci pour votre attention